- IV Интернет-олимпиада по математике/XIV тур Математического Марафона (12)→
- XV тур математического марафона (12)→
- Вторая открытая Интернет-олимпиада по математике: 9↓
- Третья Интернет-олимпиада по математике/XIII тур Математического Марафона (12)→
- Задачи конкурса Ponder This компании IBM (7)→
- Задачи областной олимпиады по математике 2010 (5)→
- Первая открытая Интернет-олимпиада по математике (9)→
- Задачи областной олимпиады по математике 2009 (5)→
- Как доказывать олимпиадные неравенства
- Задачи международного турнира
- XXI тур Математического Марафона
- Отбор на XVI Всеукраинский турнир - Часть 2
- Отбор на XVI Всеукраинский турнир - Часть 1
- Далеко, далеко, на лугу пасутся ко...
- Людоед и гномики
- Поиск фальшивой монеты
- Два парома
- Как вычислять бесконечные суммы: часть 1
- Вариации на тему игры Баше
- Мотоциклист, велосипедист и пешеход
- Утроение числа после перестановки цифр
- Как вычислять бесконечные суммы: часть 2
- Задача о поиске радиоактивных шаров
- Нестандартное решение задачи по теории вероятности
- Математические маневры
- Задача о двух мудрецах
- Ранжирование грузов по весу
Условие задачи
Один конец резиновой ленты неподвижно закреплён, а за другой тянут с постоянной скоростью v. У неподвижного конца ленты находится жук, который начинает ползти вдоль неё со скоростью u. Когда жук доползёт до противоположного конца ленты, если начальная длина ленты равна L?
Решение
Обозначим отношение положения жука на ленте к общей длине ленту как f(t).
С растяжением ленты эта величина не меняется, она увеличивается лишь за счёт собственного движения жука со скоростью u.
В момент t длина ленты составит L+vt. За время dt величина f(t) прирастёт на величину
Таким образом,
Поскольку, когда жук доползёт до конца ленты, значение f станет равным единице, нужно решить уравнение:
Задайте вопрос на блоге о математике