- IV Интернет-олимпиада по математике/XIV тур Математического Марафона (12)→
- XV тур математического марафона (12)→
- Вторая открытая Интернет-олимпиада по математике (9)→
- Третья Интернет-олимпиада по математике/XIII тур Математического Марафона: 12↓
- Задачи конкурса Ponder This компании IBM (7)→
- Задачи областной олимпиады по математике 2010 (5)→
- Первая открытая Интернет-олимпиада по математике (9)→
- Задачи областной олимпиады по математике 2009 (5)→
- Как доказывать олимпиадные неравенства
- Задачи международного турнира
- XXI тур Математического Марафона
- Отбор на XVI Всеукраинский турнир - Часть 2
- Отбор на XVI Всеукраинский турнир - Часть 1
- Далеко, далеко, на лугу пасутся ко...
- Людоед и гномики
- Поиск фальшивой монеты
- Два парома
- Как вычислять бесконечные суммы: часть 1
- Вариации на тему игры Баше
- Мотоциклист, велосипедист и пешеход
- Утроение числа после перестановки цифр
- Как вычислять бесконечные суммы: часть 2
- Задача о поиске радиоактивных шаров
- Нестандартное решение задачи по теории вероятности
- Математические маневры
- Задача о двух мудрецах
- Ранжирование грузов по весу
====================================
ММ130
Комната имеет форму прямоугольного параллелепипеда шириной , высотой и длиной . На стене сидит таракан. Он находится на расстоянии от смежной стены и на расстоянии от потолка, и хочет попасть в точку, симметричную исходной относительно центра параллелепипеда.
Для некоторых значений кратчайший путь между этими точками будет проходить через одну и ту же последовательность граней при любом x, . Для каждой такой последовательности граней приведите пример тройки .
Примечание: термин "кратчайший путь" означает путь, для которого нельзя найти путь, более короткий.
====================================
Решение
Приведём в основном решение Сергея Половинкина
Пронумеруем стороны данного прямоугольного параллелепипеда.
Грань, на которой сидит таракан, обозначим 1, боковую грань слева от 1-ой (стена) - грань 2, снизу (пол комнаты) - грань 3, правая боковая стена - грань 4, сверху (потолок комнаты) - грань 5, задняя стенка, та, куда держит путь таракан, грань 6.
Обозначим каждую грань соответствующим цветом:
1. сиреневый
2. розовый
3. голубой
4. зеленый
5. желтый
6. бирюзовый
Рассмотрим различные маршруты между заданными точками по граням параллелепипеда. Любой маршрут начинается на грани 1, а заканчивается - на 6.
Очевидно, что любой кратчайший путь (КП) не может включать одну и ту же грань дважды. Кроме того, понятно, что любой КП представляет из себя отрезок прямой, соединяющий 2 заданные точки на некоей развертке параллелепипеда.
Рассмотрим "обобщенную" развертку:
На этом рисунке при различных значениях параметров a, b, c можно нарисовать все КП, проходящие через боковые грани 2 и 4. Также приведено несколько прямых маршрутов, которые при соответствующих значениях a, b, c, x, возможно, могут быть КП: , , .
На следующем рисунке показаны маршруты через пол и потолок:
На рисунке приведены маршруты (потенциальные КП) , , , .
А на следующем рисунке можно построить все маршруты, которые теоретически могут быть КП.
Такие маршруты могут включать в себя , или граней, но не , все начинаются с и заканчиваются в , остальные грани входят не более одного раза. Всего имеем таких маршрутов, ввиду симметрии, их длины равны попарно, всего имеем пар, найдем длины всех :
1. и , длина
2. и , длина
3. и , длина
4. и , длина
5. и , длина
6. и , длина
7. и , длина
8. и , длина
9. и , длина
10. и , длина
Заметим, что длины маршрутов 3 и 6 равны, также равны маршруты 4 и 5.
Для любого набора параметров a, b, c и при любом допустимом значении x длины маршрутов 7 и 8 больше длины маршрута 1, а маршрута 9 - больше длины маршрута 2.
Получаем 5 маршрутов:
M1: и , длина
M2: и , длина
M3: , , и , длина
M4: , , и , длина
M5: и , длина
Некоторые из этих маршрутов не существуют при некоторых значениях a, b, c, x, но при других значениях любой из этих 5 может оказаться самым коротким, поэтому нужно рассматривать их все. Кроме того, если маршрут не существует (для какого-либо набора значений), то это означает, что есть другой, более короткий маршрут.
При сравнении длин маршрутов проще сравнивать квадраты длин, что не меняет знака отношения.
Заметим, что при , независимо от значений a, b и c, , а при , .
При этом же значении x, , а . Эти две величины не могут быть отрицательными одновременно, поэтому маршрут M3 не может быть решением задачи
Теперь, при , , также независимо от значений a, b и c, тогда М5 тоже не решение задачи.
Маршруты М1 и М2 являются решением, соответствующие значения параметров несложно подобрать.
Например, при , , , при всех , КП будут только М1.
А при , , , при любых , КП будет M2.
Обсуждение
Когда-то прочитал в "Кванте" задачу про насекомого, сидящего почти под потолком на торцевой стене длинного зала. Чтобы попасть в центрально-симметричную точку зала кратчайшим путём ему нужно было пройти по потолку, затем перебраться на боковую стену, затем - на пол, а уже оттуда - на противоположный торец. Придумывая задачу для Марафона я вспомнил о ней, и сначала захотел обобщить - вывести для измерений комнаты a, b, c и координат таракана x и y правила определения длины кратчайшего пути. Затем, в процессе обкатки формулировки y превратилось в , x стало принимать значения от 0 до , но рассмотрение всех вариантов всё равно оставалось достаточно объёмным, и первоначальный интерес от поиска маршрутов сменился скукой рутинных вычислений.
Последовала очередная переформулировка: меня заинтересовало, а найдутся ли такие комнаты, для которых кратчайший маршрут будет проходить всегда черед один и тот же набор граней? В таком виде процесс отсечения неподходящих вариантов необременителен, и задача была включена в Марафон.
Вот только в своём решении я отсекал маршрут просто на том основании, что существует маршрут равной длины, симметричный ему относительно вертикальной плоскости, проходящей через исходную точку, и, таким образом, не будет кратчайшим маршрутом в понимании "имеющий длину меньшую, нежели какой-либо другой". Но Алексей Волошин и Анатолий Казмерчук справедливо указали в уточняющих условие письмах, что для любого маршрута найдётся равный ему симметричный относительно центра параллелепипеда. Таким образом в формулировку внесено уточнение, а Алексей Волошин и Анатолий Казмерчук получают +1 балл.
Решением задачи в её марафонной постановке являются 2 различных параллелепипеда, представляющие 2 наиболее очевидных маршрута: через потолок и через боковую стену. Это, в общем-то, несколько скучно. Жаль, что я не установил ограничения для x, к примеру, - в этом случае среди решений был бы параллелепипед, кратчайший маршрут в котором проходил бы через 5 граней (возможность того, что такой вариант может быть кратчайшим даже не рассматривалась некоторыми участниками).
Вот зависимость длины маршрутов для случая , , , найденного Сергеем Половинкиным в развитие темы.
Полагаю, это можно отметить дополнительным баллом.
Награды
За правильное решение задачи Сергей Половинкин и Алексей Волошин получают 6+1=7 баллов, Анатолий Казмерчук получает 5+1=6 баллов, Николай Дерюгин и Евгений Гужавин получают по 3 балла.
Эстетическая оценка задачи 4.3 балла
====================================
Разбор задачи ММ130 подготовил Алексей Извалов
ММ130
Комната имеет форму прямоугольного параллелепипеда шириной , высотой и длиной . На стене сидит таракан. Он находится на расстоянии от смежной стены и на расстоянии от потолка, и хочет попасть в точку, симметричную исходной относительно центра параллелепипеда.
Для некоторых значений кратчайший путь между этими точками будет проходить через одну и ту же последовательность граней при любом x, . Для каждой такой последовательности граней приведите пример тройки .
Примечание: термин "кратчайший путь" означает путь, для которого нельзя найти путь, более короткий.
====================================
Решение
Приведём в основном решение Сергея Половинкина
Пронумеруем стороны данного прямоугольного параллелепипеда.
Грань, на которой сидит таракан, обозначим 1, боковую грань слева от 1-ой (стена) - грань 2, снизу (пол комнаты) - грань 3, правая боковая стена - грань 4, сверху (потолок комнаты) - грань 5, задняя стенка, та, куда держит путь таракан, грань 6.
Обозначим каждую грань соответствующим цветом:
1. сиреневый
2. розовый
3. голубой
4. зеленый
5. желтый
6. бирюзовый
Рассмотрим различные маршруты между заданными точками по граням параллелепипеда. Любой маршрут начинается на грани 1, а заканчивается - на 6.
Очевидно, что любой кратчайший путь (КП) не может включать одну и ту же грань дважды. Кроме того, понятно, что любой КП представляет из себя отрезок прямой, соединяющий 2 заданные точки на некоей развертке параллелепипеда.
Рассмотрим "обобщенную" развертку:
На этом рисунке при различных значениях параметров a, b, c можно нарисовать все КП, проходящие через боковые грани 2 и 4. Также приведено несколько прямых маршрутов, которые при соответствующих значениях a, b, c, x, возможно, могут быть КП: , , .
На следующем рисунке показаны маршруты через пол и потолок:
На рисунке приведены маршруты (потенциальные КП) , , , .
А на следующем рисунке можно построить все маршруты, которые теоретически могут быть КП.
Такие маршруты могут включать в себя , или граней, но не , все начинаются с и заканчиваются в , остальные грани входят не более одного раза. Всего имеем таких маршрутов, ввиду симметрии, их длины равны попарно, всего имеем пар, найдем длины всех :
1. и , длина
3. и , длина
4. и , длина
5. и , длина
6. и , длина
7. и , длина
8. и , длина
9. и , длина
10. и , длина
Заметим, что длины маршрутов 3 и 6 равны, также равны маршруты 4 и 5.
Для любого набора параметров a, b, c и при любом допустимом значении x длины маршрутов 7 и 8 больше длины маршрута 1, а маршрута 9 - больше длины маршрута 2.
Получаем 5 маршрутов:
M1: и , длина
M2: и , длина
M3: , , и , длина
M4: , , и , длина
M5: и , длина
Некоторые из этих маршрутов не существуют при некоторых значениях a, b, c, x, но при других значениях любой из этих 5 может оказаться самым коротким, поэтому нужно рассматривать их все. Кроме того, если маршрут не существует (для какого-либо набора значений), то это означает, что есть другой, более короткий маршрут.
При сравнении длин маршрутов проще сравнивать квадраты длин, что не меняет знака отношения.
Заметим, что при , независимо от значений a, b и c, , а при , .
При этом же значении x, , а . Эти две величины не могут быть отрицательными одновременно, поэтому маршрут M3 не может быть решением задачи
Теперь, при , , также независимо от значений a, b и c, тогда М5 тоже не решение задачи.
Маршруты М1 и М2 являются решением, соответствующие значения параметров несложно подобрать.
Например, при , , , при всех , КП будут только М1.
А при , , , при любых , КП будет M2.
Обсуждение
Когда-то прочитал в "Кванте" задачу про насекомого, сидящего почти под потолком на торцевой стене длинного зала. Чтобы попасть в центрально-симметричную точку зала кратчайшим путём ему нужно было пройти по потолку, затем перебраться на боковую стену, затем - на пол, а уже оттуда - на противоположный торец. Придумывая задачу для Марафона я вспомнил о ней, и сначала захотел обобщить - вывести для измерений комнаты a, b, c и координат таракана x и y правила определения длины кратчайшего пути. Затем, в процессе обкатки формулировки y превратилось в , x стало принимать значения от 0 до , но рассмотрение всех вариантов всё равно оставалось достаточно объёмным, и первоначальный интерес от поиска маршрутов сменился скукой рутинных вычислений.
Последовала очередная переформулировка: меня заинтересовало, а найдутся ли такие комнаты, для которых кратчайший маршрут будет проходить всегда черед один и тот же набор граней? В таком виде процесс отсечения неподходящих вариантов необременителен, и задача была включена в Марафон.
Вот только в своём решении я отсекал маршрут просто на том основании, что существует маршрут равной длины, симметричный ему относительно вертикальной плоскости, проходящей через исходную точку, и, таким образом, не будет кратчайшим маршрутом в понимании "имеющий длину меньшую, нежели какой-либо другой". Но Алексей Волошин и Анатолий Казмерчук справедливо указали в уточняющих условие письмах, что для любого маршрута найдётся равный ему симметричный относительно центра параллелепипеда. Таким образом в формулировку внесено уточнение, а Алексей Волошин и Анатолий Казмерчук получают +1 балл.
Решением задачи в её марафонной постановке являются 2 различных параллелепипеда, представляющие 2 наиболее очевидных маршрута: через потолок и через боковую стену. Это, в общем-то, несколько скучно. Жаль, что я не установил ограничения для x, к примеру, - в этом случае среди решений был бы параллелепипед, кратчайший маршрут в котором проходил бы через 5 граней (возможность того, что такой вариант может быть кратчайшим даже не рассматривалась некоторыми участниками).
Вот зависимость длины маршрутов для случая , , , найденного Сергеем Половинкиным в развитие темы.
Полагаю, это можно отметить дополнительным баллом.
Награды
За правильное решение задачи Сергей Половинкин и Алексей Волошин получают 6+1=7 баллов, Анатолий Казмерчук получает 5+1=6 баллов, Николай Дерюгин и Евгений Гужавин получают по 3 балла.
Эстетическая оценка задачи 4.3 балла
====================================
Разбор задачи ММ130 подготовил Алексей Извалов
Задайте вопрос на блоге о математике